Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Ferrocene compounds. XXXIX. ${ }^{1}$ 1-Ferrocenylisochromane

Mario Cetina, ${ }^{\text {a }}$ Senka Daković, ${ }^{\mathbf{b}}$ Vladimir Rapićb* ${ }^{\text {b }}$ and Amalija Golobičc ${ }^{\text {c }}$
${ }^{\text {a }}$ Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia, ${ }^{\mathbf{b}}$ Laboratory of Organic Chemistry, University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia, and ${ }^{c}$ Laboratory of Inorganic Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, PO Box 537, SI-1001 Ljubljana, Slovenia
Correspondence e-mail: vrapic@pbf.hr

Received 14 April 2003

Accepted 27 May 2003
Online 22 July 2003
In the title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}\right)\right]$, the plane of the heterocyclic ring is almost perpendicular to the plane of the substituted cyclopentadienyl ring, and the heterocyclic ring adopts a half-chair conformation. The conformation of the nearly parallel cyclopentadienyl (Cp) rings [the dihedral angle between their planes is $2.7(1)^{\circ}$] is almost halfway between eclipsed and staggered, and the rings are mutually twisted by about 19.4 (2) ${ }^{\circ}$ (mean value). The mean lengths of the $\mathrm{C}-\mathrm{C}$ bonds in the substituted and unsubstituted cyclopentadienyl ring are 1.420 (2) and 1.406 (3) \AA, respectively, and the $\mathrm{Fe}-\mathrm{C}$ distances range from 2.029 (2) to 2.051 (2) \AA. The phenyl and unsubstituted cyclopentadienyl rings are involved in $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, with intermolecular $\mathrm{H} \cdots$ centroid distances of 2.85 and $3.14 \AA$ for $\mathrm{C}-\mathrm{H} \cdots \pi(\mathrm{Ph})$, and $2.88 \AA$ for $\mathrm{C}-\mathrm{H} \cdots \pi(\mathrm{Cp})$. In two of these interactions, the $\mathrm{C}-\mathrm{H}$ bond points towards one of the ring bonds rather than towards the ring centroid. In the crystal structure, the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions connect the molecules into a three-dimensional framework.

Comment

Optically active ferrocene derivatives are widely employed as chiral ligands in asymmetric reactions, and there is continuing interest in the development of efficient procedures for the preparation of these derivatives in enantiopure forms (Gonsalves \& Chen, 1995; Bolm et al., 1998; Pioda \& Toni, 1998; Perea et al., 1999). Ferrocene derivatives exhibiting centro- and planar chirality are very convenient substrates for biotransformations (Köllner et al., 1998; Richards \& Locke, 1998; Schwink \& Knochel, 1998; Patti \& Nicolosi, 1999; Đaković et al., 2003). In the course of our research on enzymecatalyzed resolution of centrochiral ferrocene compounds,

[^0]racemic 2 -(α-hydroxyferrocenyl)benzenethanol and 1-ferrocenylisochromane, (I), were prepared by reduction of methyl 2-(ferrocenoyl)benzeneacetate (Đaković, 2000).

Fe

(I)

The molecular structure of (I) is the first reported structure to contain an isochromanyl group attached to the ferrocenyl moiety (Fig. 1). Moreover, the Cambridge Structural Database (Allen, 2002) lists only three structures containing an isochromanyl group at all (Yamato et al., 1984; Unterhalt et al., 1994; Eikawa et al., 1999). The heterocyclic six-membered ring

Figure 1
A view of (I), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 20% probability level.

Figure 2
Part of the crystal structure of (I), showing the formation of (010) sheets built from $\mathrm{C} 14-\mathrm{H} 14 A \cdots C g 1^{\mathrm{i}}$ and $\mathrm{C} 18-\mathrm{H} 18 \cdots C g 2^{\text {ii }}$ interactions ($C g 1$ and Cg 2 are the centroids of rings $\mathrm{C} 12 / \mathrm{C} 13 / \mathrm{C} 16-\mathrm{C} 19$ and $\mathrm{C} 6-\mathrm{C} 10$, respectively). $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are indicated by dashed lines. [Symmetry codes: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $1+x, y, 1+z$.]
adopts a distorted half-chair conformation, in which atoms O1 and C15 are 0.426 (1) and -0.348 (2) \AA from the plane of the other ring atoms ($\mathrm{C} 11-\mathrm{C} 14$); the $\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$ torsion angle is $2.4(2)^{\circ}$. The bond lengths in the heterocyclic and fused phenyl rings (Table 1) mostly agree with the equivalent bond lengths in the structures of 1,1'-oxybis(isochromane) (Eikawa et al., 1999) and (S)-1-(phenyl)ethylammonium (S)-isochromane-1-carboxylate (Unterhalt et al., 1994). The exception is the $\mathrm{C} 12-\mathrm{C} 13$ bond, which is shorter ($\sim 0.04 \AA$) in the latter structure. Heterocyclic ring atoms O1, C 11 and C 15 and cyclopentadienyl (Cp) ring atom C 1 lie in the same plane, the $\mathrm{C} 15-\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 1$ torsion angle being $178.95(14)^{\circ}$. The dihedral angle between the mean plane of these four atoms and the C1-C5 Cp ring is $47.8(1)^{\circ}$. Furthermore, the plane of the heterocyclic ring is almost perpendicular to the plane of the $\mathrm{C} 1-\mathrm{C} 5$ ring and is parallel to the plane of the fused phenyl ring. The corresponding dihedral angles are 87.3 (1) and $4.0(1)^{\circ}$.

The exocyclic $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11$ bond angle is larger than the $\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 11$ angle (Table 1). The Cp rings are planar and almost parallel to each other [the dihedral angle between their planes is $2.7(1)^{\circ}$], and the $\mathrm{Fe}-\mathrm{C}$ distances are in the range 2.034 (2) -2.051 (2) \AA for the substituted (C1-C5) and 2.029 (2)-2.049 (2) A for the unsubstituted (C6-C10) ring, the average values being 2.042 (2) and 2.038 (2) \AA, respectively. The $\mathrm{C}-\mathrm{C}$ bonds are slightly longer in the substituted ring than in the unsubstituted ring [1.410 (3)-1.429 (2) versus 1.397 (3)1.414 (3) \AA] , and the bond angles in both rings range from 107.52 (15) to $108.33(18)^{\circ}$.

The geometry of the ferrocenyl moiety agrees well with the structures of ferrocene (Seiler \& Dunitz, 1979) and of the

Figure 3
Part of the crystal structure of (I), showing the cyclic motif generated by the $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Cg} 1^{\mathrm{iii}}$ interaction $(C g 1$ is the centroid of ring $\mathrm{C} 12 / \mathrm{C} 13 /$ $\mathrm{C} 16-\mathrm{C} 19)$, which links the (010) sheets into a three-dimensional framework. $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are indicated by dashed lines, and the unit-cell box has been omitted for clarity. [Symmetry code: (iii) $1-x$, $-y, 2-z$.]
ferrocene derivatives we have reported previously (Cetina et al., 2002, 2003). The main conformational difference was observed in the orientation of the Cp rings. In (I), the rings are twisted from an eclipsed conformation by 19.4 (2) (mean value). The values of the corresponding $\mathrm{C}-C g 3-C g 2-\mathrm{C}$ pseudo-torsion angles (Cg 3 and $C g 2$ are the centroids of the $\mathrm{C} 1-\mathrm{C} 5$ and $\mathrm{C} 6-\mathrm{C} 10$ rings, respectively), defined by joining two eclipsing Cp C atoms through the ring centroids, range from 19.0 (2) to 19.7 (2) ${ }^{\circ}$. The conformation is almost exactly halfway between eclipsed and staggered, as demonstrated by the $\mathrm{C} 1-C g 3-C g 2-\mathrm{C} 9$ torsion angle of $163.4(1)^{\circ}$. This angle would be 180° for a staggered conformation and 144° for a fully eclipsed conformation. The centroids of the Cp rings are almost equidistant from the Fe atom; the $\mathrm{Fe}-\mathrm{Cg} 3$ and $\mathrm{Fe}-$ $C g 2$ distances are 1.647 (1) and 1.650 (1) Å, respectively, while the $C g 3-\mathrm{Fe}-C g 2$ angle is 178.2 (1) ${ }^{\circ}$.

There are a number of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2 and Fig. 2). Atom $\mathrm{H} 14 A$ of the heterocyclic ring is positioned almost perpendicularly above the phenyl-ring centroid (Cg1) of the adjacent molecule. The six relevant $\mathrm{H} \cdots \mathrm{C}$ distances fall in the narrow range $3.06-3.28 \AA$, and the $\mathrm{H} \cdots C g^{i}$ distance is significantly shorter than any of the $\mathrm{H} \cdots \mathrm{C}$ distances [symmetry code: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$; Table 2]. The $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction between phenyl atom H18 and the unsubstituted Cp ring exhibits a completely different geometry. The $\mathrm{H} 18 \cdots \mathrm{C} 7^{\mathrm{ii}}$ distance is shorter than the $\mathrm{H} \cdots C g^{\mathrm{ii}}$ distance [symmetry code: (ii) $1+x, y, 1+z$]. The second shortest $\mathrm{H} \cdots \mathrm{C}$ contact is that to atom C 6 , and the $\mathrm{C}-\mathrm{H}$ bond points towards the $\mathrm{C} 6-\mathrm{C} 7$ bond of the Cp ring rather than towards the ring centroid (Cg2). Similarly, the longest interaction, C5-H5 \cdots Cg1 $1^{\text {iii }}$ [symmetry code: (iii) $1-x,-y, 2-z$], points towards the $\mathrm{C} 12-\mathrm{C} 13$ bond. Both the $\mathrm{H} 5 \cdots \mathrm{C} 12^{\mathrm{iii}}$ and the $\mathrm{H} 5 \cdots \mathrm{C} 13^{\mathrm{iii}}$ contacts are shorter than the $\mathrm{H} \cdots C g^{\mathrm{iii}}$ distance. The molecules linked by these $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions build a three-dimensional framework (Fig. 3).

Experimental

NaBH_{4} ($253 \mathrm{mg}, 6.7 \mathrm{mmol}$) was added gradually to a solution of methyl 2-(ferrocenoyl)benzeneacetate ($326 \mathrm{mg}, 0.9 \mathrm{mmol}$) in a mixture of EtOH and $\mathrm{Et}_{2} \mathrm{O}(1: 1 \mathrm{v} / v ; 5 \mathrm{ml})$. The mixture was refluxed for 2 h and worked up in the usual manner. Separation by preparative thin-layer chromatography on silica gel (Merck, Kieselgel $60 \mathrm{HF}_{254}$) yielded 2-(α-hydroxyferrocenyl)benzeneethanol (237 mg ; yield 78\%) and orange crystals of 1 -ferrocenylisochromane (57 mg ; yield 20%; m.p. 365-366 K). Single crystals of the title compound were obtained by slow evaporation from a cyclohexane solution at room temperature. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$: v $3081(w)$ and $3020(w)(\mathrm{C}-\mathrm{H}$, ferrocene $)$, 2942 (m) (C-H, aliphatic), 1278 (m) (C-O-C); ${ }^{1} \mathrm{H}$ NMR (DMSO, p.p.m.): $\delta 7.18$ ($d, 1 \mathrm{H}, \mathrm{H} 16$), 7.12 ($d, 1 \mathrm{H}, \mathrm{H} 17$), 7.14 ($d, 1 \mathrm{H}, \mathrm{H} 18$), 7.16 ($d, 1 \mathrm{H}, \mathrm{H} 19$), 4.23 ($s, 5 \mathrm{H}$, unsubstituted ferrocene ring), 4.13-4.20 (m, 4 H , substituted ferrocene ring), $3.97(m, 1 \mathrm{H}, \mathrm{H} 15 A), 3.77(m, 1 \mathrm{H}$, H 15 B), 2.78 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 14$), 5.58 ($s, 1 \mathrm{H}, \mathrm{H} 11$); ${ }^{13} \mathrm{C}$ NMR (DMSO, p.p.m.): $\delta 137.29$ (C12), 132.91 (C13), 128.5 (C17), 126.25 (C18), 125.98 (C16), 125.36 (C19), 90.21 (C1), 73.63 (C11), 68.62 (unsubstituted ferrocene ring), 68.56-66.31 (substituted ferrocene ring), 61.55 (C15), 27.99 (C14).

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}\right)\right]$
$M_{r}=318.18$
Monoclinic, $P 2_{1} / c$
$a=11.5053$ (2) A
$b=18.5095$ (3) \AA
$c=7.1941$ (1) A
$\beta=106.933$ (1) ${ }^{\circ}$
$V=1465.62(4) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (DENZO-SMN; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.630, T_{\text {max }}=0.857$
16885 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.076$
$S=1.03$
3334 reflections
190 parameters
H-atom parameters constrained
$D_{x}=1.442 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3411 reflections
$\theta=2.6-27.5^{\circ}$
$\mu=1.02 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, orange
$0.80 \times 0.40 \times 0.15 \mathrm{~mm}$

3334 independent reflections
2662 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.064$
$\theta_{\text {max }}=27.4^{\circ}$
$h=-14 \rightarrow 14$
$k=-23 \rightarrow 23$
$l=-9 \rightarrow 9$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0341 P)^{2} \\
&+0.3545 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$).

O1-C11	$1.4236(19)$	C13-C19	$1.392(3)$
O1-C15	$1.432(2)$	C13-C14	$1.504(3)$
C1-C11	$1.503(2)$	C14-C15	$1.501(3)$
C11-C12	$1.523(2)$	C16-C17	$1.384(3)$
C12-C16	$1.388(2)$	C17-C18	$1.380(3)$
C12-C13	$1.397(2)$	C18-C19	$1.379(3)$
C11-O1-C15	$110.39(13)$	C1-C11-C12	$112.14(13)$
C2-C1-C11	$127.61(14)$	C13-C12-C11	$119.77(14)$
C5-C1-C11	$124.78(14)$	C12-C13-C14	$120.38(16)$
O1-C11-C1	$109.37(13)$	C15-C14-C13	$111.24(15)$
O1-C11-C12	$111.64(13)$	O1-C15-C14	$110.04(15)$

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).
$C g 1$ and $C g 2$ are the centroids of rings $\mathrm{C} 12 / \mathrm{C} 13 / \mathrm{C} 16-\mathrm{C} 19$ and $\mathrm{C} 6-\mathrm{C} 10$, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 14-\mathrm{H} 14 A \cdots C g 1^{\mathrm{i}}$	0.97	2.85	$3.627(2)$	138
$\mathrm{C} 18-\mathrm{H} 18 \cdots C g 2^{\mathrm{ii}}$	0.93	2.88	$3.660(2)$	142
$\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{C} 7^{\mathrm{ii}}$	0.93	2.86	$3.760(3)$	163
$\mathrm{C} 18-\mathrm{H} 18 \cdots 6^{\text {ii }}$	0.93	3.03	$3.874(3)$	151
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Cg} 1^{\mathrm{iii}}$	0.93	3.14	$3.984(2)$	152
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{C} 12^{\mathrm{iii}}$	0.93	2.98	$3.840(2)$	154
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{C} 13^{\text {iii }}$	0.93	3.02	$3.949(2)$	177

Symmetry codes: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $1+x, y, 1+z$; (iii) $1-x,-y, 2-z$.

All H atoms were included in calculated positions as riding atoms, with SHELXL97 (Sheldrick, 1997) defaults viz. $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic H atoms, $0.98 \AA$ for methine H atoms, and $0.97 \AA$ for methylene H atoms. For all H atoms, the isotropic displacement parameters were set at 1.2 times the equivalent anisotropic displacement parameters of the attached non-H atoms.

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: $D E N Z O-S M N$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The reflection data were collected at the Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia. We acknowledge with thanks the financial contribution of the Ministry of Education, Science and Sport of the Republic of Slovenia (grant Nos. X-2000 and PS-511-103), which made the purchase of the apparatus possible.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1251). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bolm, C., Muñiz-Fernández, K., Seger, A., Raabe, G. \& Gunther, K. (1998). J. Org. Chem. 63, 7860-7867.
Cetina, M., Hergold-Brundić, A., Nagl, A., Jukić, M. \& Rapić, V. (2003). Struct. Chem. 14, 289-293.
Cetina, M., Mrvoš-Sermek, D., Jukić, M. \& Rapić, V. (2002). Acta Cryst. E58, m676-m678.
Đaković, S. (2000). PhD thesis, University of Zagreb, Croatia.
Đaković, S., Lapić, J. \& Rapić, V. (2003). Biocatal. Biotransform. In the press.
Eikawa, M., Sakaguchi, S. \& Ishii, Y. (1999). J. Org. Chem. 64, 4676-4679.
Gonsalves, K. E. \& Chen, X. (1995). Ferrocenes, edited by A. Togni \& T. Hayashi, ch. 10, pp. 497-527. Weinheim: VCH.
Köllner, C., Pugin, B. \& Togni, A. (1998). J. Am. Chem. Soc. 120, 10274-10275. Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Patti, A. \& Nicolosi, G. (1999). Tetrahedron: Asymmetry, 10, 2651-2654.
Perea, J. J. A., Lotz, M. \& Knochel, P. (1999). Tetrahedron: Asymmetry, 10, 375-384.
Pioda, G. \& Togni, A. (1998). Tetrahedron: Asymmetry, 9, 3903-3910.
Richards, C. J. \& Locke, A. (1998). Tetrahedron: Asymmetry, 9, 2377-2407.
Schwink, L. \& Knochel, P. (1998). Chem. Eur. J. 4, 950-968.
Seiler, P. \& Dunitz, J. D. (1979). Acta Cryst. B35, 2020-2032.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Unterhalt, B., Krebs, B., Lage, M. \& Nocon, B. (1994). Arch. Pharm. 327, 799804.

Yamato, M., Hashigaki, K., Kokubu, N. \& Nakato, Y. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 1301-1304.

[^0]: ${ }^{1}$ Part XXXVIII: Retina et al. (2003).

